Reg. No. :

Name :

Sixth Semester B.Sc. Degree Examination, March 2021

First Degree Programme Under CBCSS

Mathematics

Core Course XIII

MM 1645 — INTEGRAL TRANSFORM

(2018 Admission Regular)

Time: 3 Hours

Max. Marks: 80

. – 1566

SECTION - I

All the first ten questions are compulsory. These questions carry 1 mark each.

1. What are inverse transforms?

2. What is $L(t^n)$?

3. Write shifted function.

4. What is convolution of f and g, f * g?

5. If
$$L(f) = \frac{1}{(s^2 + \beta^2)^2}$$
 then $f(t) = -$

6. What is the period of sine function?

- 7. Give the Euler formula for a_n , where a_n is the coefficient of $\cos nx$ in the Fourier series expansion of a periodic function.
- 8. $\int_{-\infty}^{\pi} \sin nx \sin mx \, dx =$
- 9. Define odd function.
- 10. Write the Fourier series expansion of an even function.

 $(10 \times 1 = 10 \text{ Marks})$

P.T.O.

SECTION - II

Answer **any eight** questions from among the questions 11 to 26. These questions carry **2** marks each.

- 11. Find Laplace transform of e^{at}.
- 12. Find the Laplace transform of cosh at.
- 13. Under suitable conditions, prove that $L(f'') = s^2 L(f) sf(0) f'(0)$.
- 14. Find the inverse transform of $\frac{1}{s(s^2 + \omega^2)}$.
- 15. Is the convolution, f * 1 = f? Justify.
- 16. Show that f * g = g * f.
- 17. What is Dirac delta function?
- 18. State existence theorem for Laplace transforms.
- 19. Prove that $\int \cos nx \cos mx \, dx = 0$.
- 20. Are there functions which are neither even nor odd? Justify.
- 21. What is the amplitude spectrum of rectangular wave function?
- 22. Give the representation of a periodic function f(x) as a Fourier integral.
- 23. What is the relation between Dirichlet's discontinuous function and sine integral?
- 24. What is Gibbs phenomenon?
- 25. Represent $f(x) = 1/(1 + x^2)$ as an integral.
- 26. Write the Fourier cosine transform of an even periodic functions f(x).

 $(8 \times 2 = 16 \text{ Marks})$

Answer **any six** questions from among the questions 27 to 38. These questions carry **4** marks **each**.

- 27. State and prove linearity of the Laplace transforms.
- 28. Find the inverse transform $L(f) = \frac{3s 137}{s^2 + 2s + 401}$.

- 29. If $f(t) = t \sin \omega t$, find L(f).
- 30. Prove that $L\left(\int_{0}^{t} f(\tau) d\tau\right) = \frac{1}{s}F(S).$
- 31. If $H(S) = \frac{1}{(s^2 + \omega^2)^2}$, find h(t).
- 32. Solve Volterra's integral equation of second kind :

$$y(t) - \int_0^t (1+\tau) y(t-\tau) d\tau = 1 - \sin h \tau$$

- 33. Sketch the graph of $f(x) = |\sin x|$.
- 34. Write the Fourier series and Euler formula for the coefficients for a function f(x) of period 2L.
- 35. Find the Fourier sine series of $f(x) = \begin{cases} -k & \text{if } -2 < x < 0 \\ k & \text{if } 0 < x < 2 \end{cases}$ P = 2L = 4, L = 2.
- 36. Derive Fourier sine integral for $f(x) = e^{-kx}$ for x > 0, k > 0.
- 37. Find the Fourier cosine transforms of the function $f(x) = \begin{cases} k & \text{if } 0 < x < a \\ 0 & \text{if } x > a \end{cases}$
- 38. Find $\mathcal{F}_c(e^{-x})$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer **any two** questions from among the questions 39 to 44. These questions carry **15** marks each.

- 39. (a) Solve the initial value problem y'' + y' + 9y = 0, y(0) = 0.16, y'(0) = 0.
 - (b) Determine the response of the damped mass-spring system under a square wave modeled by y'' + 3y' + 2y = r(t) = u(t-1) u(t-2), y(0) = 0, y'(0) = 0.

40. (a) Solve
$$y'' + y' = 2t$$
, $y\left(\frac{\pi}{4}\right) = \frac{\pi}{2}$, $y'\left(\frac{\pi}{4}\right) = 2 - \sqrt{2}$.

- (b) State and prove Convolution Theorem.
- 41. Solve the initial value problem for a damped mass-spring system acted upon by a sinusoidal force for some time interval y'' + 2y' + 2y = r(t), $r(t) = 10. \sin 2t$, if $0 < t < \pi$ and if $t > \pi$; y(0) = 1, y'(0) = -5.
- 42. Find the Fourier series expansion of $f(x) = \begin{cases} x & \text{if } -\pi < x < 0 \\ \pi x & \text{if } 0 < x < \pi \end{cases}$.
- 43. (a) Find the Fourier series expansion of sawtooth wave function.
 - (b) Let f(x) be continuous and absolutely integrable on the x-axis. f'(x) is piecewise continuous on every finite interval and let $f(x) \rightarrow 0$ as $x \rightarrow \infty$. Prove that

(i)
$$\mathcal{F}_{c}[f'(x)] = w \mathcal{F}_{s}[f(x)] - \sqrt{\frac{2}{\pi}} f(0)$$

(ii)
$$\mathcal{F}_{s}|f'(x)| = -\omega \mathcal{F}_{c}|f(x)|$$
.

44. Find the two half range expansions of $f(x) = \begin{cases} \frac{2k}{L}x, & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L \end{cases}$

 $(2 \times 15 = 30 \text{ Marks})$

L - 1566

Reg. No. :

Sixth Semester B.Sc. Degree Examination, March 2021

First Degree Programme under CBCSS

Mathematics

Core Course IX

MM 1641 : REAL ANALYSIS - II

(2018 Admission Regular)

Time: 3 Hours

Max. Marks: 80

SECTION - A

All the first ten questions are compulsory. They carry 1 mark each.

1. Evaluate $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$.

2. State true or false : Every continuous function in a closed interval is bounded.

3. Determine the points of discontinuity of the greatest integer function.

4. State Rolle's theorem.

5. Define a uniformly continuous function.

6. Define a differentiable function at a point.

- 7. Give an example of a real valued function which is discontinuous at every point of R.
- 8. Define upper integral of a function *f*.
- 9. When do you say that a bounded real function f is integrable on [a, b]?
- 10. State true or false : If |f| is integrable on [a, b] then f is also integrable on [a, b].

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions (11 - 26). Each question carries 2 marks.

- 11. Evaluate the limit : $\lim_{x \to 2} \frac{|x-2|}{x-2}$.
- 12. Let f and g be real valued functions then prove that $\lim_{x \to c} \{f(x)g(x)\} = \lim_{x \to c} f(x) \lim_{x \to c} g(x).$

13. Prove that the Dirichlet's function *f* defined on R by $f(x) = \begin{cases} 1 & \text{when } x \text{ is irrational} \\ -1 & \text{when } x \text{ is rational} \\ \text{is discontinuous at every point.} \end{cases}$

- 14. If f, g be two functions continuous at a point c, then the function f + g is also continuous at c.
- 15. Show that the function $f(x) = x^2$ is uniformly continuous on [-1, 1].
- 16. Prove that $\{f(x_n)\}$ is a Cauchy sequence for every Cauchy sequence $\{x_n\}$ in R where *f* is a uniformly continuous function.
- 17. If f is differentiable in (a, b) and $f'(x) \le 0$ for all $x \in (a, b)$, show that f is monotonically decreasing.
- 18. Show by an example that a bounded function in [a, b] need not be continuous in [a, b].

2

- 19. Let *f* be defined on [a, b]. If *f* is differentiable at a point $c \in [a, b]$, then *f* is continuous at *c*.
- 20. Suppose *f* and *g* are defined on [a, b] and are differential at a point $x \in [a, b]$. Prove that *fg* is differentiable.
- 21. Give an example to show that continuous function need not be differentiable.
- 22. Check whether the following function is integrable over [0, 1] f(x)=1 if $x \in [0, 1]$ and x is rational and f(x)=0 if $x \in [0, 1]$ and x is irrational.
- 23. Show that $\int_{a}^{b} f dx \leq \int_{a}^{b} f dx$.
- 24. If P and Q are two partitions of [a, b] and $P \subseteq Q$ then for a bounded function f, prove that $U(Q, f) L(Q, f) \le U(P, f) L(P, f)$.
- 25. Show that if *f* and *g* are bounded and integrable on [a, b], such that $f \ge g$, then $\int_{a}^{b} f dx \ge \int_{a}^{b} g dx$.
- 26. If *f* is bounded and integrable in [a, b], Prove that there exists a number μ lying between *a* and *b* such that $\int_{a}^{b} f(x) dx = \mu(b-a)$.

$(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions (27 - 38). Each question carries 4 marks.

- 27. Show that the limit $\lim_{x\to 0} \left(\sin \frac{1}{x} \right)$ does not exist.
- 28. State and prove extreme value theorem.
- 29. Prove that a function which is continuous on a closed interval is uniformly continuous on that interval.

- 30. Suppose *f* is a real differentiable function on [a, b] and suppose $f'(a) < \lambda < f'(b)$. Prove that there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.
- 31. Prove that if *f* is differentiable on an open interval in (a, b) and *f* attains a minimum value at some point *c* in (a, b) then f'(c) = 0.

32. State and prove chain rule of differentiation.

33. State and prove Darboux's theorem.

- 34. Compute $\int f dx$ where f(x) = |x|.
- 35. State and prove Mean value theorem.
- 36. Prove that if f is monotonic in [a, b], then f is integrable in [a, b].
- 37. If *f* and *g* are integrable in [a, b] then show that *fg* is also integrable in [a, b].
- 38. Prove that a continuous function in a closed interval is integrable in that interval.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions (39 - 44). Each question carries 15 marks.

- Define Lipschitz functions. Show that every Lipschitz function is uniformly continuous. Is the converse true? Justify.
- 40. State and prove Intermediate value theorem. Is the converse true? Justify.
- 41. State and prove chain rule for differentiation.
- 42. Suppose f and g are real and differentiable in (a,b) and that $f'(x) \neq 0$ for all $x \in (a, b)$. If $\lim_{x \to a} g(x) = +\infty$ then show that $\lim_{x \to a} \frac{g'(x)}{f'(x)} = L$ implies $\lim_{x \to a} \frac{g(x)}{f(x)} = L$.
- 43. A bounded function *f* is integrable on [*a*, *b*] if and only if for every $\varepsilon > 0$ there exists a partition P such that $U(P, f) L(P, f) < \varepsilon$.
- 44. State and prove fundamental theorem of integral calculus.

 $(2 \times 15 = 30 \text{ Marks})$

4

Reg. No. :

Name :

Sixth Semester B.Sc. Degree Examination, March 2021

First Degree Programme under CBCSS

Mathematics

Core Course XI

MM 1643 : ABSTRACT ALGEBRA-RING THEORY

(2018 Admission Regular)

Time : 3 Hours

Max. Marks: 80

- 1562

SECTION - I

Answer all the first 10 questions. Each carries 1 mark.

- 1. Give an example of a non-commutative ring with unity.
- 2. Write a subring of Z_6 , the integers modulo 6.
- 3. Define the term "Zero divisors".
- 4. Why **Z**₁₀, the integers modulo 10 is not an integral domain.
- 5. Find the characteristic of the integral domain Z_{19} , the integers modulo 19.
- 6. List the elements in $2\mathbb{Z}/6\mathbb{Z}$.
- 7. Show that the correspondence $x \mapsto 3x$ from \mathbb{Z}_4 to \mathbb{Z}_{12} does not preserve multiplication.
- 8. Give an example of an integral domain which is not a unique factorization domain.

- 9. True or False : "The ring of Gaussian integers a unique factorization domain".
- 10. In the ring of integers, find a positive integer *a* such that $\langle a \rangle = \langle 6 \rangle + \langle 8 \rangle$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions among the questions 11 to 26. They carry 2 marks each.

- 11. Let ϕ : **R**[x] \mapsto **C** be a homomorphism with the property that $\phi(x) = \phi(i)$. Evaluate $\phi(x^2 + 1)$.
- 12. Show that the polynomial 2x + 1 in $\mathbb{Z}_4[x]$ has a multiplicative inverse in $\mathbb{Z}_4[x]$.
- 13. Show that the polynomial $2x^2 + 4$ is not reducible over \mathbb{Q} but reducible over \mathbb{Z} .
- 14. Suppose that R is an integral domain in which 20 * 1 = 0 and 12 * 1 = 0. What is the characteristic of R?
- 15. Let *D* be a Euclidean domain with measure *d*. Show that if *a* and *b* are associates in *D*, then d(a) = d(b).
- 16. Show that $\mathbb{Z}\left[\sqrt{-6}\right]$ is not a unique factorization domain.
- 17. If *a* and *b* belong to $\mathbb{Z}[\sqrt{d}]$, where *d* is not divisible by the square of a prime and *ab* is a unit, power that *a* and *b* are units.
- 18. Give an example of ring elements *a* and *b* with the properties that ab = 0 but $ba \neq 0$.
- 19. Prove that "Let a, b and c belong to an integral domain. If $a \neq 0$ and ab = ac, then b = c".
- 20. Prove that the only idempotents in an integral domain are 0 and 1.
- 21. Consider the equation $x^2 5x + 6 = 0$. Find all solutions of this equation in \mathbb{Z}_{8} .
- 22. Find a subring of $\mathbb{Z} \oplus \mathbb{Z}$ that is not an ideal of $\mathbb{Z} \oplus \mathbb{Z}$.
- 23. Draw the lattice diagram of ideals of \mathbb{Z}_{36} .
- 24. Give an example of a commutative ring that has a maximal ideal that is not a prime ideal.

- 25. Show that the mapping a + ib to a ib is a ring isomorphism from the complex numbers onto the complex numbers.
- 26. Give an example of a ring with unity 1 that has a subring with unity 1' such that $1' \neq 1$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions among the questions 27 to 38. They carry 4 marks each.

- 27. If R is a ring, then for any $a, b \in R$, show that a(-b) = (-a)b = -(ab).
- 28. Show that "If p is a prime, then \mathbb{Z}_p is a field".
- 29. Let *F* be a field of order 2^n . Prove that characteristic of F = 2.
- 30. Let *p* be a prime. Show that in the ring \mathbb{Z}_p you have $(a + b)^p = a^p + b^p$. for every $a, b \in \mathbb{Z}_p$.
- 31. Let *R* be a ring and let *I* be an ideal of *R*. Prove that the factor ring *R*/*I* is commutative if and only if $rs sr \in I$ for all *r* and *s* in *R*.
- 32. Find all ring homomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{30} .
- 33. Show that "If D is an integral domain, then D[x] is an integral domain".
- 34. Find the quotient and remainder upon dividing $f(x) = 3x^4 + x^3 + 2x^2 + 1$ by $g(x) = x^2 + 4x + 2$.
- 35. By stating necessary theorem show that the polynomial $3x^5 + 15x^4 20x^3 + 10x + 20$ is irreducible over \mathbb{Q} , the set of rational numbers.
- 36. Prove that "In an integral domain, every prime is an irreducible".
- 37. Let *F* be a field and let *a* be a non zero element of *F*. If f(x + a) is irreducible over *F*, prove that f(x) is irreducible over *F*.
- 38. Let *D* be a Euclidean domain with measure *d*. Prove that *u* is a unit in *D* if and only if d(u) = d(1).

 $(6 \times 4 = 24 \text{ Marks})$

3

SECTION - IV

Answer any two questions among the questions 39 to 44. They carry 15 marks each.

- 39. Prove that "Let R be a commutative ring with unity and let A be an ideal of R. Then R/A is an integral domain if and only if A is prime".
- 40. (a) Let *a* and *b* be idempotents in a commutative ring. Show that each of the following is also an idemptotent :
 - (i) *ab*
 - (ii) a-ab
 - (iii) a+b-ab
 - (iv) a+b-2ab.
 - (b) Show that a unit of a ring divides every element of the ring.
- 41. (a) Prove that "Let ϕ be a ring homomorphism from a ring R to a ring S. Then $Ker\phi = \{r \in R; \phi(r) = 0\}$ is an ideal of R".
 - (b) Show that $\phi: \mathbb{Z}_4 \mapsto \mathbb{Z}_{10}$ by $\phi(x) = 5x$ is a ring homomorphism.
- 42. Prove that "A polynomial of degree *n* over a field has at most *n* zeros, counting multiplicity".
- 43. Prove that "Let $f(x) \in \mathbb{Z}$ [x]. If f(x) is reducible over \mathbb{Q} , then it is reducible over \mathbb{Z} ".

4

44. In $\mathbb{Z}[i]$, show that 3 is irreducible but 2 and 5 are not.

 $(2 \times 15 = 30 \text{ Marks})$

Reg. No. :

Name :

Sixth Semester B.Sc. Degree Examination, March 2021

First Degree Programme under CBCSS

Mathematics

Core Course – X

MM 1642 - COMPLEX ANALYSIS II

(2018 Admission Regular)

Time : 3 Hours

Max. Marks: 80

L - 1559

SECTION - A

All the first **10** questions are compulsory. They carry **1** mark each.

- 1. Write the power series representation of $f(z) = \frac{1}{z-1}$ in powers of z.
- 2. If f(z) is analytic inside a circle C with centre at z_0 and $f(z) = \sum_{i=0}^{\infty} a_k (z z_0)^k$. What is the value of a_k ?
- 3. What is the order of the zero of $z(e^z 1)$?
- 4. Classify the singularity at z = 0 of the function $f(z) = \frac{\sin z}{z^5}$.
- 5. Define Cauchy principal value of the improper integral $\int_{-\infty}^{\infty} x dx$.

6. State Jordan's lemma.

State Reimann mapping theorem.

8. Define Mobius transformation.

9. What type of singularity the function $e^{1/z'}$ has at z = 0?

10. Find the residue at z = 0 for the function $f(z) = \frac{1}{z + z^2}$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions (11-26) Each question carries 2 marks

11. Using comparison test, show that the series $\sum_{k=1}^{\infty} \left(\frac{1}{k^2 + 1}\right)$ converges.

12. Find the circle of convergence of the power series $\sum_{k=0}^{\infty} \frac{(z-2)^k}{3^k}$.

13. If the radius of convergence of the power series $\sum_{k=0}^{\infty} a_k Z^k$ is *R*, find the radius of convergence of $\sum_{k=0}^{\infty} k^3 a_k Z^k$.

14. Find the Maclaurin series of sinh z.

15. Find the residue of the function $f(Z) = \frac{z^3 + z^2}{(z-1)^3}$, at z = 1.

16. Determine the zeros and their order of the function $f(z) = z \sin z^2$.

17. Determine the order of the pole and residue of the function $\frac{\sinh z}{z^4}$ at z = 0.

- 18. Write down the principal part of the function $z \exp\left(\frac{3}{z}\right) = \left(z+3+\frac{3^2}{2!z}+...\right)$ at its isolated singular point and determine the nature of the singularity.
- 19. Find the residue of $f(z) = \tan z$ at each of its singular points.
- 20. Show that $\int_C \exp\left(\frac{1}{z^2}\right) dz = 0$, where C is positively oriented circle |z| = 1.
- 21. Evaluate $\int_C \cot z dz$, where C denote the positively oriented circle |z| = 2.
- 22. If z_0 is a pole of f(z), show that $\lim_{z \to z_0} f(z) = \infty$.
- 23. Find $\sum_{1}^{\infty} \frac{1}{n^2}$.
- 24. Show that a Mobius transformation, not the identity, has at most two fixed points.
- 25. Define the cross ratio of the four points z, z_1 , z_2 , z_3 and find the cross ratio (z, -1, 0, 1).
- 26. Find the map of the circle |z| = 3 under the transformation w = 2z.

(8 × 2 = 16 Marks)

SECTION - C

Answer any six questions (27-38). Each question carries 4 marks.

27. Find a power series representing the function $f(z) = \frac{1}{z^2}$ about z = 2. Also find the radius of convergence.

28. State and prove Weierstrass M-test.

- 29. Find the Laurent's series expansion for the function $f(z) = \frac{1}{z(z-1)}$ valid for 1 < |z-2| < 2.
- 30. Let *f* be analytic at z_0 . Prove that *f* has a zero of order *m* for f(z) at z_0 if and only if *f* can be written as $f(z) = (z z_0)^m g(z)$ where g(z) is analytic at z_0 and $g(z_0) \neq 0$.
- 31. Find the singularities of the function $f(z) = \frac{4-3z}{z(z-1)(z-2)}$ and hence find the corresponding residues.

32. Evaluate
$$\int_C \frac{z^3 dz}{(z-2)^2}$$
 where C is the positively oriented circle $|z-1|=2$.

33. If f(z) has a pole of order m at z = a, then show that $\operatorname{Res}_{z=a} f(z) = \frac{1}{(n-1)!} \left\{ \frac{d^{n-1}}{dz^{n-1}} [(z-a)^n f(z)] \right\} \text{ at } z = a.$

34. Use residues to prove that $\int_0^{2\pi} \frac{d\theta}{\sqrt{2} - \cos \theta} = 2\pi$.

- 35. Find the image of the unit circle |z|=1 under the linear fractional transformation $f(z) = \frac{z+2}{z-1}$.
- 36. Find the Mobius transformation that maps 0, $i_{1} \propto 0$ onto 0, 1, 2.
- 37. Prove that the transformation $w = f(z) = \frac{1}{z}$ maps circles passing through the origin onto lines not passing through the origin.
- 38. Prove that a cross ratio is invariant under linear fractional transformation.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION – D

Answer any two questions (39-44). Each question carries 15 marks

- 39. (a) Find the zeros of the analytic function $f(z) = z \sin z^2$.
 - (b) Describe the three types of isolated singular points.
 - (c) Determine the order of the rational function $f(z) = \frac{2z+5}{(z-1)(z+5)(z-2)^4}$.
- 40. (a) Use Cauchy's residue theorem to evaluate $\int_C \frac{z+1}{z^2-2z} dz$ around the circle |z|=3 in the positive sense.
 - (b) Use residue theorem to prove that $\int_0^\infty \frac{1}{1+x^6} dx = \frac{\pi}{3}$.
- 41. (a) State and prove Cauchy's residue theorem.
 - (b) Compute P.V $\int_{-\infty}^{\infty} \frac{x \cos x}{x^2 + 9} dx$.
- 42. (a) Find the singularities of the function $f(z) = \frac{z^2 z}{(z+1)^2(z^2+4)}$ and hence find the corresponding residues.
 - (b) Show that $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+1)^2} dx = \frac{\pi}{e}$.
- 43. (a) Show that $\int_0^{2\pi} \frac{d\theta}{1 + a\cos\theta} = \frac{2\pi}{\sqrt{1 a^2}} (-1 < a < 1).$

(b) Use residues to find the Cauchy principle value of $\int_{-\infty}^{\infty} \frac{dx}{(x^2 - 3x + 2)(x^2 + 1)}$

44. (a) Find all the points where the mapping $f(z) = \sin z$ is conformal.

(b) Find the Mobius transformation that maps -1, *i*, 1 onto 0, *i*, ∞ .

(c) Discus the image of the circle |z-2|=1 under the transformation $w = \frac{z-4}{z-3}$.

(2 × 15 = 30 Marks)

(Pages : 4)

Ľ – 1569

Reg. No. :

Name :

Sixth Semester B.Sc. Degree Examination, March 2021

First Degree Programme under CBCSS

Mathematics

MM 1661.1 : Graph Theory (Elective)

(2018 Admission Regular)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

1. Define a simple graph.

2. How many edges do K₂₀ have?

- 3. Define an empty graph.
- 4. Define a connected graph.
- 5. A tree with n vertices has ... edges.
- 6. Define a cut vertex of a graph.
- 7. Define a Hamiltonian graph.
- 8. Is K₄ Eulerian?
- 9. How many regular polyhedra are there?
- 10. State Euler's formula in a connected plane graph.

 $(10 \times 1 = 10 \text{ Marks})$

P.T.O.

SECTION - II

Answer **any eight** questions from among the questions 11 to 26. These questions carry **2** marks each.

- 11. Define a bipartite graph with example.
- 12. Define a regular graph. Draw a 2-regular graph.
- 13. Let G be a graph in which there is no pair of adjacent edges. What can you say about the degrees of the vertices in G?

Ź

- 14. Define complement of a graph. Give an example.
- 15. Define join of two graphs.
- 16. Define adjacency matrix of a graph G. Give an example.
- 17. Draw all non-isomorphic trees with 4 vertices.
- 18. Define vertex connectivity of a graph with example.
- 19. Define a maximal non-Hamiltonian graph. Give example.
- 20. Define an Euler tour. Give an example.
- 21. Define a Jordan curve.
- 22. State Cayley's theorem on spanning trees.
- 23. Define a plane graph. Give an example.
- 24. Define a polyhedral graph.
- 25. State Kuratowski's theorem on planar graphs.
- 26. How can we obtain a subdivision of a graph G.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION – III

Answer **any six** questions from among the questions 27 to 38. These questions carry **4** marks each.

- 27. Prove that in any graph there is an even number of odd vertices.
- Given two vertices u and v of a graph G. Prove that every u-v walk contains a u-v path.
- 29. Define the following in a connected graph
 - (a) Distance between two vertices
 - (b) Eccentricity of a vertex
 - (c) Radius of a graph
 - (d) Diameter of a graph.
- 30. Let u and v be distinct vertices of a tree T. Prove that there is precisely one path from u to v.
- 31. Prove that an edge e of a graph G is a bridge if and only if e is not part of any cycle in G.
- 32. Let G be a graph with n vertices where $n \ge 2$. Prove that G has at least two vertices which are not cut vertices.
- 33. Describe Konigsberg bridge problem.
- 34. Define closure of a graph. Prove that a simple graph G is Hamiltonian if and only if its closure c(G) is Hamiltonian.
- 35. Let G be a graph in which the degree of every vertex is at least two. Then prove that G contains a cycle.
- 36. Prove that the complete graph K_5 is non planar.

- 37. If G is a simple planar graph then prove that G has a vertex v of degree less than 6.
- 38. Let G be a simple graph with at least 11 vertices. Prove that either G or its complement \overline{G} must be non-planar.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer **any two** questions from among the questions 39 to 44. These questions carry **15** marks each.

- 39. Let G be a non-empty graph with at least two vertices. Prove that G is bipartite if and only if it has no odd cycles.
- 40. Define a spanning tree with example. Prove that a graph G is connected if and only if it has a spanning tree.
- 41. Let G be a simple graph with at least three vertices. Then prove that G is 2-connected if and only if for each pair of distinct vertices u and v of G there are two internally disjoint u-v paths in G.
- 42. Prove that a connected graph is Euler if and only if the degree of every vertex is even.
- 43. (a) Describe travelling salesman problem.
 - (b) If G is a simple graph with n vertices where $n \ge 3$ and the degree $d(v) \ge n/2$ for every vertex V of G then prove that G is Hamiltonian.
- 44. Let P be a convex polyhedron and G be its corresponding polyhedral graph. For each $n \ge 3$ let v_n denote the number of vertices of G of degree n and let f_n denote the number of faces of G of degree n. Prove that.
 - (a) $\sum_{n\geq 3} nv_n = \sum_{n\geq 3} nf_n = 2e$, where e is the number of edges of G.
 - (b) The polyhedron P and so the graph G has at least one face bounded by a cycle of length n for either n = 3, 4 or 5.

 \cdot (2 × 15 = 30 Marks)